Crystal structure of octabutyl- μ-dichloro- $\mu_{3}{ }^{-}$ dioxodichlorotetratin(IV)

Reijo Hämäläinen and Urho Turpeinen
Division of Inorganic Chemistry, University of IIelsinki, SF-00100 Helsinki 10 (Finland)
(Received April 8th, 1987)

Abstract

An X-ray diffraction study has shown that Sn atoms in octabutyl $-\mu$-dichloro- $\mu_{3^{-}}$ dioxodichlorotetratin(IV) have distorted trigonal bipyramidal geometry with cisequatorial butyl groups. $\mathrm{Sn}(1)-\mathrm{C}($ but $)$ and $\mathrm{Sn}(2)-\mathrm{C}($ but) bonds are $2.077(21)$, $2.111(26)$ and $2.097(23), 2.114(22) \AA$, respectively. The distances of the triply-bridging O atom from Sn atoms are $2.151(9), 2.018(9)$ and $2.069(9) \AA$, and those of the bridging Cl atom are $2.666(5)$ and $2.831(6) \AA$. The distance $\mathrm{Cl}(\operatorname{term})-\mathrm{Sn}(2)$ is $2.426(5) \AA$. Refinement of the structure, based on 1828 observed reflections, converged to an R factor of 0.049 and a weighted R of 0.053 . Crystal data for the compound are: $a 13.672(6), b 19.529(9), c 8.999(2) \AA, \beta 102.66(3)^{\circ}$, space group $P 2_{1} / c, \quad Z=2, \quad M_{\mathrm{r}}=1105.49$ for $\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}\right], V 2344(2) \AA^{3}, \quad D_{\mathrm{x}} 1.464$ $\mathrm{gcm}^{-3}, F(000)=1096, \lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.71069 \AA, \mu 22.1 \mathrm{~cm}^{-1}$ and $T 293 \mathrm{~K}$.

Introduction

Tin has a rich organometallic chemistry with many practical applications. The tin atom exhibits two- to eight-coordination in neutral, cationic, or anionic species giving rise to dimers and other oligomers. This variety in structural properties can lead to ambiguity in symmetry type and coordination number even in relatively simple systems. We have prepared some selected alkyltin compounds, of which only the title compound has to date yielded suitable crystals for X-ray diffraction analyses.

Experimental

The compound was prepared by treating 0.01 mole of dibutyltin dichloride (Aldrich) in acetylacetone with 30 ml of 1.0 M NaOH solution. The mixture was gently warmed on a water bath then the white precipitate was filtered off and dried in air. It was recrystallized in acetone at room temperature. Cell dimensions from
least-squares refinement of 18 reflections centred on a Nicolet P3 diffractometer with $9<2 \theta<23^{\circ}$. The space group $P 2_{1} / c$ was uniquely determined by the observed systematic absences $h 0 l(l=2 n+1)$ and $0 k 0(k=2 n+1)$. Intensity data were collected from crystal $0.30 \times 0.30 \times 0.30 \mathrm{~mm}$. Mo- $K_{\text {a }}$ radiation and graphite monochromator were used. 4339 unique intensities between $4.0<2 \theta<50^{\circ}$ with ω-scan and variable scan rate 2.0 to $30.0^{\circ} \mathrm{min}^{-1}$, maximum $\sin \theta$ / 0.594 A . h. . . ± 1 set with maximum values 15,22 . 10 . respectively. Two standard reflections examined after every 68 measurements showed no significant variation. Lorentz and polarization corrections were applied together with an empirical absorption correction based on the ϕ-scan method (min. 0.78, max. 1.00). No correction was made for secondary extinction. The structure was solved by MULTAN 80 [1] and Fourier methods of XRAY 76 program system [2]. Anisotropic least-squares refinement for non-hydrogen atoms reduced R value to $0.049, R_{w}=0.053$ and $(1 / \sigma) \mathrm{max}=0.46$. Final max and min electron densities 0.53 and -0.48 eA . A total of 1828 reflections with $\left|F_{0}\right| \geq 6.00\left(\left|F_{0}\right|\right)$ were used in the refinement. The function minimized was $\Sigma w\left(\left|F_{6}\right|-\left|F_{0}\right|^{2}\right.$ with $w=1 / \sigma^{2}\left(F_{0}\right)$ based on comnting statistics. Atomic scattering factors from Cromer and Mann [3]. The anomalous dispersion corrections specified by Cromer \& Liberman [4] were included for Sn and Cl atoms. The infrared spectrum was recorded on a Perkin-Elmer 577 spectrophotometer with KBr pellets.

Discussion

The atomic coordinates with equivalent isotropic temperature factors [5] are presented in Table 1 and interatomic distances and angles in Table 2. A perspective

Table 1
Atomic coordinates $\left(\times 10^{4}\right)$ and isorropic thermal parameters $U_{\mathrm{eq}}=\sum_{i} \Sigma_{2} U_{i} u_{i} u_{i}^{\star} a_{i}^{\star} a_{1} a_{2}$

	x	y	z	$l_{\mathrm{ad}}\left(\mathrm{A}^{2}\right)$
Sn(1)	$5009(1)$	-402(1)	$1639(1)$	0089
$\operatorname{Sn}(2)$	4988(1)	1541(1)	1523 (1)	0093
$\mathrm{Cl}(1)$	5024(5)	--1767(2)	1588(6)	0128
$\mathrm{Cl}(2)$	$5000(5)$	1034(3)	$3988(6)$	0144
O(1)	4989(8)	596(5)	$620(10)$	0.084
C(1)	6431(18)	- 351(11)	3045 (24)	0.140
C(2)	7279(25)	-620(17)	2763(34)	0.225
C(3)	8238(25)	-551(19)	4018(42)	0.235
C(4)	8968(30)	-723(25)	$3734(45)$	0.307
C(5)	3569(18)	--336(11)	2122(25)	0146
C(6)	2781(25)	-687(17)	$1413(38)$	0.231
C(7)	1784(29)	-613(24)	1881(50)	0253
C(8)	949(40)	$507(31)$	751(63)	0.396
C(9)	6419(17)	1982(11)	1883(24)	0.127
C(10)	7134(24)	1738(15)	3132(35)	0.186
C(11)	8206(33)	$2061(23)$	3274(45)	0.245
C(12)	8985(36)	1804(24)	4226058)	0.311
C(13)	3524(16)	1952(11)	$933(24)$	0.131
C(14)	2855(23)	1768(15)	1857(32)	0.192
C(15)	1799(29)	2064(21)	1215(46)	0.250
C(16)	1070(33)	1780(28)	1689(58)	0.865

Table 2
Interatomic distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}(1)-\mathrm{Cl}(1)$	2.666 (5)	$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{C}(5)$	131.5(9)
$\mathrm{Sn}(1)-\mathrm{O}(1)$	2.151(9)	$\mathrm{C}(1)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{1}\right)$	113.9(7)
$\mathrm{Sn}(1)-\mathrm{C}(1)$	2.077(21)	$\mathrm{C}(5)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{1}\right)$	114.6(6)
$\operatorname{Sn}(1)-\mathrm{C}(5)$	2.111(26)	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{O}(1)$	89.6(3)
$\mathrm{Sn}(2)-\mathrm{Cl}(2)$	$2.426(5)$	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{C}(9)$	102.0(6)
$\mathrm{Sn}(2)-\mathrm{O}(1)$	2.018(9)	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{C}(13)$	101.6(6)
$\mathrm{Sn}(2)-\mathrm{C}(9)$	2.097(23)	$\mathrm{Cl}(2)-\mathrm{Sn}(2)-\mathrm{Cl}\left(1^{\mathrm{i}}\right)$	164.8(3)
$\mathrm{Sn}(2)-\mathrm{C}(13)$	2.114(22)	$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{Cl}\left(1^{\mathrm{i}}\right)$	75.4(3)
$\mathrm{Sn}(2)-\mathrm{Cl}\left(1^{\mathrm{i}}\right)^{a}$	2.831(6)	$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(9)$	110.8(7)
$\mathrm{Sn}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	$2.069(9)$	$\mathrm{O}(1)-\mathrm{Sn}(2)-\mathrm{C}(13)$	109.3(6)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.346 (43)	$\mathrm{C}(9)-\mathrm{Sn}(2)-\mathrm{C}(13)$	133.1(8)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.538(43)	$\mathrm{C}(9)-\mathrm{Sn}(2)-\mathrm{Cl}\left(1^{i}\right)$	83.8(4)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.326 (60)	$\mathrm{C}(13)-\mathrm{Sn}(2)-\mathrm{Cl}\left(1^{\mathrm{j}}\right)$	80.8(5)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.318 (38)	$\mathrm{Sn}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	126.6(18)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.519(57)	$\mathrm{Sn}(1)-\mathrm{C}(5)-\mathrm{C}(6)$	124.6(22)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.368(62)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.3(28)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.402(35)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	104.2(32)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.574(55)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.3(31)
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.312(60)$	$C(6)-C(7)-C(8)$	117.5(42)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.411(41)	$\mathrm{Sn}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	116.6(19)
$\mathrm{C}(14)-\mathrm{C}(15)$	1.545(48)	$\mathrm{Sn}(2)-\mathrm{C}(13)-\mathrm{C}(14)$	117.1(16)
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.292(67)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	113.7(27)
		$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.5(39)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\mathrm{i}}\right)$	78.4(3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	110.9(26)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{O}(1)$	153.9(3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	116.1(37)
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	92.8(6)		
$\mathrm{Cl}(1)-\mathrm{Sn}(1)-\mathrm{C}(5)$	94.4(6)		
$\mathrm{Sn}(1)-\mathrm{O}(1) \mathrm{Sn}(2)$	$131.2(5)$		
$\operatorname{Sn}(1)-\mathrm{O}(1)-\mathrm{Sn}\left(1^{i}\right)$	104.6(4)		
$\mathrm{Sn}(1)-\mathrm{Cl}(1)-\mathrm{Sn}\left(2^{1}\right)$	82.3(5)		
$\mathrm{Sn}(2)-\mathrm{O}(1)-\mathrm{Sn}\left(1^{\mathrm{i}}\right)$	124.3(4)		
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{C}(1)$	98.0(6)		
$\mathrm{O}(1)-\mathrm{Sn}(1)-\mathrm{O}\left(1^{\text {i }}\right.$)	75.4(3)		

$a_{\mathrm{i}}=-x+1,-y,-z$.
view of the molecule with labelled atoms is given in Fig. 1. Lists of thermal parameters and structure factors are available from the authors. The centrosymmetric molecule contains two $\mathrm{Sn}_{2} \mathrm{Bu}_{4} \mathrm{Cl}_{2} \mathrm{O}$ units joined together by bridging Cl and triply bridging O atoms. Another Sn -coordinated Cl atom in the asymmetric unit is terminal. Each Sn atom is in a distorted trigonal bipyramidal environment with cis equatorial butyl groups.

Together the four Sn , two bridging Cl , and two triply-bridging O atoms form a planar structure made up of three quadrilaterals. The non-linear chlorine bridges involve fairly long $\mathrm{Sn}-\mathrm{Cl}$ distances of $2.666(5)$ and $2.831(6) \AA$. The bridging $\mathrm{Sn}-\mathrm{Cl}-\mathrm{Sn}$ angle is only $82.3(5)^{\circ}$, while the axial $\mathrm{Cl}-\mathrm{Sn}(2)-\mathrm{Cl}$ angle has a value of $164.8(3)^{\circ}$. The two distances of the bridging O atom from the Sn atoms, 2.151(9), $2.069(9) \AA$, and the angle $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn} 104.6(4)^{\circ}$ in the central $\mathrm{Sn}_{2} \mathrm{O}_{2}$ ring are comparable to the values reported for dimeric oxotrifluoroacetatovinyltin compound [6].

Fig. 1. An ORTEP drawing of the molecule and the atom labelling of the asymmetric unit.

The $\mathrm{Sn}-\mathrm{C}$ values falling between $2.077(21)$ and $2.114(22) \mathrm{A}$, are consistent with the generalisation that the $\mathrm{Sn}-\mathrm{C}$ bond tends to be shorter when the Sn is also attached to chlorine [7]. The shortest $\mathrm{Sn} . . \mathrm{Sn}$ distance is $3.338(2) \mathrm{A}$, between $\mathrm{Sn}(1)$ and $\operatorname{Sn}\left(1^{1}\right)$, where $\mathrm{i}=-x+1,-y,-z$. There are no intermolecular contacts below

Fig. 2. Infrared spectrum of $\left[\mathrm{Sn}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)_{8} \mathrm{Cl}_{4} \mathrm{O}_{2}\right]$.
$3.30 \AA$. As expected, the infrared spectrum (Fig. 2) contains bands at 600 and 540 cm^{-1} in the $\mathrm{Sn}-\mathrm{C}$ stretching region, where the higher-frequency band corresponds to the asymmetric $\mathrm{Sn}-\mathrm{C}$ stretch [8]. A single band of $310 \mathrm{~cm}^{-1}$ is attributable to $\mathrm{Sn}-\mathrm{Cl}$ stretching frequencies. Symmetric and asymmetric stretching modes of $\mathrm{Sn}-\mathrm{O}-\mathrm{Sn}$ bridges are assigned at ca. $410-430$ and $700 \mathrm{~cm}^{-1}$ in agreement with corresponding assignments in the $\left[\mathrm{Sn}_{3} \mathrm{O}_{2} \mathrm{Cl}_{4}\left(\mathrm{ClO}_{4}\right)_{4}\right]_{2}$ spectrum [9].

References

1 P. Main, S.J. Fiske, S.E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M.M. Woolfson, MULTAN 80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York and Louvain, 1980.
2 J.M. Stewart, P.A. Machin, C.W. Dickinson, H.L. Ammon, H. Heck and H. Flack, The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland, 1976.

3 D.T. Cromer and J.B. Mann, Acta Cryst., A, 24 (1968) 321.
4 D.T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.
5 W.C. Hamilton, Acta Cryst., 12 (1959) 609.
6 C.D. Garner, B. Hughes and T.J. King, Inorg. Nucl. Chem. Lett., 12 (1976) 859.
7 B. Beagley, K. McAloon and J.M. Freeman, Acta Cryst. B, 30 (1974) 444.
8 R.J.H. Clark, A.G. Davies and R.J. Puddephatt, J. Chem. Soc. A, 8 (1968) 1828.
9 C. Belin, M. Chaabouni, J.-L. Bascal, J. Potier and J. Rozierre, Chem. Comm., (1980) 105.

